La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3.
¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?
Una suposición errónea es que, una vez sólo queden dos puertas, ambas tienen la misma probabilidad (un 50%) de contener el coche. Es errónea ya que el presentador abre la puerta después de la elección de jugador. Esto es, la elección del jugador afecta a la puerta que abre el presentador.
Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad.
Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra. En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.
En resumen, si mantiene su elección original gana si escogió originalmente el coche (con probabilidad de 1/3), mientras que si cambia, gana si escogió originalmente una de las dos cabras (con probabilidad de 2/3). Por lo tanto, el concursante debe cambiar siempre su elección.
¿Por qué sucede esto?
Porque lo que muestra el presentador no afecta a tu elección original, sino sólo a la otra puerta no escogida. Una vez se abre una puerta y se muestra la cabra, esa puerta tiene una probabilidad de 0 de contener un coche, por lo que deja de tenerse en cuenta. Si el conjunto de dos puertas tenía una probabilidad de contener el coche de 2/3, entonces, si una tiene una probabilidad de 0, la otra debe tener una probabilidad de 2/3. La elección, básicamente, consiste en preguntarte si prefieres seguir con tu puerta original o escoger las otras dos puertas. La probabilidad de 2/3 se traspasa a la otra puerta no escogida (en lugar de dividirse entre las dos puertas restantes de modo que ambas tengan una probabilidad de 1/2) porque en ningún caso puede el presentador abrir la puerta escogida inicialmente. Si el presentador escogiese al azar entre las dos puertas con cabras (incluyendo la del concursante), abriese una de ellas y luego diese de nuevo a elegir, entonces las dos puertas restantes sí tendrían la misma probabilidad de contener el coche.
Una forma más clara de verlo es replantear el problema. Si en lugar de haber sólo tres puertas hubiese 100, y tras la elección original el presentador abriese 98 de las restantes para mostrar que tras de ellas hay cabras, si no cambiase su elección ganaría el coche sólo si lo ha escogido originalmente (1 de cada 100 veces), mientras que si la cambia, ganaría si no lo ha escogido originalmente (y por tanto es lo que resta tras abrir las 98 puertas), ¡99 de cada 100 veces!
Por si no lo veis claro, aqui va una explicación gráfica: tenemos 3 cajas:
([?][?][?]) antes de comenzar el juego, la probabilidad de encontrar el premio entre las tres cajas es de 3/3 (es decir el premio está dentro del grupo de las tres cajas)
elijo… la 1ª
([?]) vs ([?][?]) ahora hay dos grupos: la caja que yo elegí (con probabilidad 1/3 y el grupo de las otras dos cajas (con probabilidad 2/3)
se descubre un burro
([?]) vs ([?]) =1/3 vs 2/3
¿dónde es más probable que se encuentre el premio? ¿en mi caja o entre las otras dos (aunque una esté descubierta)?
Evidentemente es más probable que esté entre las otras dos.
Comprobémoslo con 6 cajas (cinco contienen burro y una premio):
([?][?][?][?][?][?])antes de empezar hay una probabilidad 6/6 de encontrar el premio dentro del grupo
elijo la primera (o cualquier otra)
([?]) vs ([?][?][?][?][?])ahora hay dos grupos: la caja que yo elegí (con probabilidad 1/6 y el grupo de las otras cinco cajas (con probabilidad 5/6)
Preguntémonos en este punto: ¿dónde es más probable que esté el premio, en la caja que he elegido (1/6) o entre las 5 restantes (5/6)?
se descubren 4 burros
([?]) vs ([?])=1/6 vs 5/6
Otra vez la misma pregunta: ¿dónde es más probable que esté el premio, en mi caja o entre las otras 5?